Mediation and Enterprise Service Bus
A position paper

Colombe Hérault, Gaél Thomas, and Philippe Lalanda

Université Joseph Fourier,
Laboratoire Logiciels Systemes Réseaux, Equipe Adele
F-38041 Grenoble Cedex 9, France

firstname.name@Qimag.fr

Abstract. Enterprise Service Buses (ESB) are becoming standard to
allow communication between Web Services. Different techniques and
tools have been proposed to implement and to deploy mediators within
ESBs. It turns out however that current solutions are very technology-
oriented and beyond the scope of most programmers. In this position
paper, we present an approach that clearly separates the specification of
the mediation operations and their execution on an ESB. This work is
made within the European-funded S4ALL project (Services For All).

1 Introduction

The integration of business activities is a long standing problem that has been
tackled with different approaches (asynchronous middleware, Enterprise Integra-
tion application, etc.). The integration issue is perceived today through a new
angle with the need to integrate distant applications available on the Internet.
This raises challenging new problems related to communication over a public
network, security and of course interoperability.

Service-oriented architectures constitute a very promising approach to in-
tegrate Internet applications: they actually provide the level of flexibility and
scalability required to build industrial e-applications. However, service-oriented
computing is today essentially technology-driven. Most available platforms focus
on the technology allowing to publish and compose services and to make them
communicate (i.e. SOAP [?], WSDL [?], UDDI [?], etc.). Different services may
manipulate similar data or services under very different formats. The problem
of data and interfaces heterogeneity is not directly addressed and left to the
e-applications programmers.

As a remedy to this issue, several research areas are explored, including
work about the semantic Web and ontologies! [?]. In this paper, we focus on
an emerging middleware called Enterprise Service Bus (ESB [?] [?]). ESBs are
providing technological solutions to intercept messages between Web Services
and to translate or route them to help the integration of business applications.

! http://protege.stanford.edu/publications/ontology_development /ontology101-noy-
mcguinness.html

In this paper, we argue that this technological solutions must come with models
and tools allowing developers to describe the mediation operations at a higher
level of abstraction. This work is carried out within the European ITEA project
S4ALL (see www.itea-office.org), which aims at creating tools and models to
build services using data from many heterogeneous sources from IT servers to
industrial devices.

The paper is organized as it follows. The next section describes the notion
of mediation and generalizes this notion to different non-functional behaviors.
The section 3 presents a toy application as part of the European S4ALL project.
The section 4 presents the global vision that we plan to implement. Finally, the
section 5 concludes this paper.

2 From mediation to ESB

The concept of mediation is primarily an answer to the lack of interoperability
between clients and data sources in Information Systems. Early mediation so-
lutions evolved in order to also enhance the global quality of service provided
by large scope of database systems. More recently the ESB (Enterprise Service
Bus) concept has emerged in the context of B2B (Business to Business [?]). The
ESB incorporates the concept of mediation to facilitate the design of application
based on Webservices.

2.1 Mediation

Definitions As defined by G. Wiederhold in [?,?], mediation is ”a layer of
intelligent middleware services in information systems, linking data resources
and application programs”. the integration of various data resources (databases,
Webservices or devices) and application programs (Webservices, enterprise ap-
plications, etc) raise a number of issues, essentially due to heterogeneity (see
fig. 1).

The mediation layer is made of many mediators that are light weight compo-
nents (e.g. independent black boxes that can be composed) and are composed to
form mediation chains between client applications and data sources. G. Wieder-
hold defines a mediator as ”software module that exploits encoded knowledge
about certain sets or subsets of data to create information for a higher layer of
applications. It should be small and simple, so that it can be maintained by one
expert or, at most, a small and coherent group of experts” [?].

Mediators capabilities Mediation includes tasks such as transformation and
synthesis of data that can go from basic format translation in order to match
a particular standard, to more sophisticated analysis using ontology or expert
knowledge, adding new values to the data. Synthesis may be done over multiple
data sources, having heterogeneous data type. For example, one may have to
apply a currency conversion between services from different countries or may
want to extract the global evolution of the activity of a plan over a week period

‘ Client layer

Mediation layer

‘ Ressource layer

Fig. 1. Mediation layer

from a database containing daily information.
The aim of mediation is thus to abstract data and extract the domain knowledge
[?] in order to ease the decision making by providing operations such as :

— selection upon different data;

— transformation from a data type to an other;

— integration of different data sources;

— selection of data source when there are many data sources available;
— resolution of inconsistent data.

Mediation added value The mediation code can be seen as code that is
particular to a specific exchange between a client and a data source. Motivations
to dissociate mediation code and business code are obviously to increase the
separation of concerns and to decrease the coupling between client and data
sources. Mediators are seen as elements which are not really part of the client,
nor part of the data source but much more of the ”binding” between them.
Mediation improves:

— reusability : you may reuse a particular mediator in several mediation chains,
for example an XML validation service.

— evolution of code : when a new client or a new data source appears, or even
when there is a simple modification of one of them, it is not necessary to
modify the code its interlocutors; only a new mediation element is added to
the mediation chain.

— scalability : as mediation allows to integrate new clients and data sources
progressively.

Using mediation concepts makes it easier to integrate code that enterprises do
not want to modify, because of the cost (legacy code). It also avoids to product
a client or a data source that would be able to interact with only one specific
interlocutor.

Mediator patterns In the service based application life cycle, a new business
arises : the mediator chain designer. Its task consists in finding appropriate
mediators and detail their sequence. From [?] and [?], a basic mediator pattern
list can be established :

— exzaminers modify the content of the request (e.g. validation, authentication,
authorization, or monitoring);

— transformation mediators modify the content of the request (e.g. data type
mapping and enhancement);

— transcoder mediators modify the format of the request but not its content.
They allow requests to go through different transport protocol to interact;

— cache mediators stock results of already executed requests in order to save
time and resources;

— routers chose the service they are giving the request to, depending on the
content of the request. Discovery mediators do the same thing using besides
a trader to dynamically chose the right service.

— operator mediators (e.g comparator, union, intersection, combination or ag-
gregation);

— clone mediators dispatch a unique request to several services.

Related works Most interesting solutions in data mediation field are based
on ontologies mapping. Indeed the heterogeneity of data leads to the need for
semantic information. In order to deal with it, applications have been enhanced
with ontologies. But it leads to the multiplication of ontologies in information
systems regrouping many applications. Solutions such as WSMX? and TSIM-
MIS? [?], FOAM* or [?] provide abstractions and tools to generate mediators
implementing the mappings between ontologies.

2.2 Mediation in ESB

Initially used for the integration of heterogeneous data store (databases, files,
etc), the concept of mediation takes a new breath with SOA and Webservices.
Mediation has thus become an essential part of ESBs (Enterprise Service Buses)
(see fig. 2 inspired from [?] and IBM/SOA?®).

An ESB is actually a middleware providing integration facilities built on top of
industrial standards such as XML, SOAP, WSDL, WS-Addressing, WS-Policy,
WS-Security and WS-ReliableMessaging, J2EE Connector Architecture [?]. Be-
sides mediation functionalities, the ESB provides:

— a trading service in order to find appropriate services;
— communication service (mostly asynchronous with MOM and publish/subscribe);
— orchestration service (based on BPEL [?]).

2 http://www.wsmo.org/TR/d13/d13.3/v0.2/

3 http://www-db.stanford.edu/tsimmis/tsimmis.html

4 http://www.aifb.uni-karlsruhe.de/WBS/meh /foam/

® http://www-306.ibm.com /software/infol /websphere/index.jsp?tab=landings/esb

Orchestration
engine

Partail

Other client
applications

—

L ﬁ)
Enterprise Senice Bus

£aSUrEME

J@l
:;&:;

==

|I| >

PRI

STRRET

Rl =1 1]=d

YWehservice

Legacy
application

Database

COther new
applications

Fig. 2. Enterprise Service Bus

In ESB, the term mediation has a larger acception. In addition to transformation
functionalities, mediation also includes :

— Security (e.g. cryptography, authorization, etc) which is a major preoccupa-
tion when different companies, using heterogeneous security systems need to

interact.

— Dynamic routing and dispatch of requests potentially to multiple receivers
in order to perform load balancing or to respond to failure of a data source

for instance.

— Other non-functional actions related to QoS management such as incom-
plete data management, quality measurement, tracing, caching, or failure

detection and recovery.

In the context of the ESBs, there are two different approaches to implement
mediators. Mediators can be ad hoc pieces of code that intercept requests and
process them. Mediators are dispatched over the network, some elements being
closer to the client side (such as transformation to proprietary data format) other
to data source side (such as synthesis, reducing network congestion). The second
approach is to implement mediators as Webservices. Then, they are integrated to
the service-based application as any other service. In any case, their requirements
are to be available, reliable and easily maintainable. In the architecture, there
are no constraints on whom the mediation components belong to or on their

implementation.

2.3 limits of ESB

Despite these new approaches, there is no unique definition of ESB. ESB so-
lutions are closer to commercial products packaging ad-hoc tools, than to a
structured architectural layer. First ESBs were proprietary tools (Sonic ESB,
Fiorano ESB?, Cape Clear®, PolarLake Integration Suite’, etc). They were us-
ing proprietary solutions that were managed only at implementation level, such
as the mediations in WebSphere [?]. Now these companies make an effort to
capitalize there work into projects such as :

— projects directly working on mediation solution such as Apache Synapse.
Synapse is a really recent project that emphasizes the role of mediation in
SOA solutions;

— projects focusing on a larger scope that mediation such as new Open-source
ESBs (e.g. Celtix'? and Petals'! from Objectweb, Mule!? and ServiceMix!?)
from CodeHaus, OpenESB!* from Sun). These projects provide code and
tools (container, communication service, trader, etc) to build specific well-
suited ESB. For the moment, they do not really focus on modeling the medi-
ation. In the ObjectWeb consortium, researchers working on ESBs capitalize
their results the ESB Initiative (ESBi'®).

— a project that does not relate directly to mediation seems to overcome the
ESB domain at the moment : the Sun Java Enterprise Service Bus API'6
(JBI). This API mostly defines a standardized container for services. It may
have an impact on mediation because it also standardizes the exchanges
between services (the sequence and format).

ESBs do not provide sufficient software engineering abstractions to give a high
level comprehension of the architecture and the interactions of this layer. It
focuses on development and administration and leads to lack of maintainability,
whether it is a dynamic or a statical administration of the system.

3 Projet S4ALL

3.1 Project summary

The S4ALL project has been active since July 2005. It is funded by the European
Community and brings together major industrial actors interested in delivering

5 http://www.sonicsoftware.com/products/sonic_esb/
" http://www.fiorano.com/products/esb_key_for_bca.htm
8 http://www.capeclear.com/products/ccESB4ws.shtml
9 http://www.polarlake.com/en/html/resources/esb/
10 http://celtix.objectweb.org/
" http://petals.objectweb.org/
'2 http://mule.codehaus.org/
'3 http://servicemix.org/
' https://open-esb.dev.java.net/
15 https://wiki.objectweb.org/ESBi/
6 http://www.jcp.org/aboutJava/communityprocess/edr/jsr208/

new services to their customers, including Alcatel, Nokia, Schneider Electric.
The high level objectives of S4ALL are the following :

— To study the process of service creation, taking into account end-users, man-
ufacturers and service providers requirements and to implement service cre-
ation and customization tools for different audience and supporting environ-
ments, that are the professionals, the end-users on PC and the end-users on
mobile devices,

— To specify and implement the appropriate service execution infrastructure.
In particular, the partners will focuse on the delivery of open sources OSGi
platforms, a J2EE server and an Enterprise Service Bus.

— To demonstrate selected vertical applications in the telco and industrial fields
illustrating all aspects developed within the project.

Applications that have been provided by the telco (Alcatel and Nokia) and by
Schneider Electric (a world leader in power distribution) cannot be disclosed for
the moment. In the following section we thus present a toy example (dealing
with supermarkets and bakeries) that exhibits the main characteristics of the
industrial applications studied in the project.

3.2 An example to illustrate the problem

The purpose of this section is to present a simple example and show how medi-
ation techniques can be used in the Webservice context.

Figure 3 presents a simple scenario where a cybermarket provides a web service
to buy different kinds of products, including bread. The cybermarket actually
buy its bread from two different bakeries. Relationships between the cybermar-
ket and the bakeries are implemented with Webservices. As it can be expected,
data exchanged and interfaces used by these two bakeries aren’t the same. In
this example, the cybermarket wants to find the n least expensive bread sorts.
Bakery 1 can directly answer to this question, but bakery 2 can only send the
list of all its prices.

Bakery 1 ‘ ’ Bakery 2

* Web Service Interface

+ Web Service Request

}

Fig. 3. A simple scenario

Using an ESB approach, the two bakeries are integrated using proxies that act
as mediation elements. Two proxies are used in the cybermarket to encapsulate
the calls to the bakeries and the cybermarket. With workflow languages, we can
model our application but we can’t separate the proxies from the application
model: the proxy are inserted in the application model either like Web Services
or by using language extensions.None of these two solutions is satisfying: by
mixing at the same level the mediation and the process, an application designer
can’t understand the logical of the application (the model of the application)
because there is no difference between the high level description of the application
(what the application does) and the implementation of this description (how this
application is implemented). The consequence of this lack of separation between
the model and the implementation are principally:

— A lack of reusability of the application. Indeed, if a bakery server changes
the designer should change the functional description of the application,
although the model of the application doesn’t change. In the same way, the
mediation chain to access a bakery can’t be reused in another application
because it is mixed in the functional description of the application.

— A difficult design of the application because the application designer should
simultaneously design the model of the application and the way it is imple-
mented.

To improve these two aspects, our first goal is to provide a complete separa-
tion between the application model and the implementation view of this appli-
cation. The second requirement of our work is to reuse the ESB tools : indeed,
our purpose is not to re-engineer the already existing execution models, but the
separation between these models and implementation aspects like mediation. By
generalizing the notion of mediation to other non functional aspects of the appli-
cation, like the quality of service, we are also improving the separation between
the application model and its implementation.

3.3 An solution based on mediation

Figure 4 presents an architecture including mediation. A first mediator is used to
aggregate the different bakeries. The aggregator gives the n lowest bread prices
by mixing the data received from the two bakeries. Then, two mediators are
used to hide the heterogeneity between the bakeries. Bakery 1 translator sends
a request to find the n least expensive breads from bakery 1 to save bandwidth.
Bakery 2 translator sends a request to find all the prices and gives only the n
least expensive prices.

On the cybermarket side, a unique data format and a unique interface is
then used to question the bakeries. By using mediation, the server (the bakeries)
and the client (the cybermarket) don’t have to be modified to incorporate new
non-functional properties.

This solution based on mediation shows the complexity of the mediation
chain. Indeed, we are only managing two bakeries and the chain remains simple.

’ Bakery 1 ‘ ’ Bakery 2

Trang ator Trandator * Web Service Interface

Aggregator + Web Service Request

o - O Mediator
_ermar

Fig. 4. A simple scenario with mediation

To really construct mediation chains, we should separate what does a mediation
element from how it is connected: this separation between the chain and the
implementation of mediation elements improve also the reusability. A mediation
element can be reused in other application and we are separating the work of
designing a mediation element from the work of composing these mediation
elements. The architecture of the mediation chain also allows the insertion of
other non functional element, like monitoring, security or verification elements:
as explained before, these elements shouldn’t appear in the application model,
but in the mediation chain.

One of the possibility introduced by modeling the mediation chain between an
executable model and the services that we plan to implement is the distribution
of such mediation element in a network of hosts. Indeed, for load balancing,
proximity or bandwidth reasons, it is more efficient to execute the mediation
elements in a network of machine instead of using a single machine. A language
to deploy the chain in a real network (a distributed ESB in our case) is thus
necessary.

The last requirement of our mediation architecture is the dynamic adapta-
tion of a mediation chain. Indeed, by separating the executable model of the
application from its implementation, we doesn’t have to stop the executable
model to change how a service call is made. In our bakery scenario, dynamic
adaptation allow, for example, the insertion of new bakeries to provide bread in
the cybermarket without interrupting it. This possibility avoids the interruption
of service time during a reconfiguration.

4 Our approach

4.1 A first experience

The purpose of this position paper is to promote the idea that it is important
to specify the mediation operations in an abstract fashion, decoupled from the

execution environment (the ESBs in our case). To do so, our goal is to extend a
mediation tool developed by the Scalagent company [?]. This tool allows to :

— describe mediation chains with an ADL (Architecture Definition languages)
where mediation operations are performed by software components

— describe the execution environment and the way the mediation components
have to be deployed on it

— automate the deployment and administration of the code installed on the
network

This tool has been used successfully to develop (and industrialize) e-services
in the domain of power distribution [?]. In this context, mediation is used be-
tween applications run on a J2EE infrastructure and OSGi-based gateways (see
www.osgi.org). We are now exploring, in the S4All project, the way to extend
this tool to deal with the connection of applications and Web services through
ESBs and to automate the code generation and to allow dynamic reconfigura-
tion.

The reminder of this section describes our new proposition. It presents the ar-
chitectural and deployment views that we plan to model and implement.

4.2 Decoupling mediation

Figure 5 gives an overview of our model. First, we have defined a Platform Inde-
pendent Model (PIM)!7 [?][?] in order to specify mediation chains independently
of the ESBs and of the execution process: the model of the application and the
implementation are separated, and the implementation of the mediation chain
between the execution process and the services is modeled in a high level lan-
guage. Our purpose is to increase understandability and reusability. This model
includes the following elements:

— Service: any data source (Webservice, equipment, etc);

— Client: any application (Webservice or other) requesting a Service;

— Mediators: a component that is able to receive 1 to n pieces of data and send
1 to n pieces of data; it can be seen as a binding between Clients (1..n) and
Services (1..n);

— Mediator component binding: link between Mediator components.

Through a dedicated tool, it is possible to assemble these elements to form
mediation chains. The implementation of mediation elements themselves aren’t
modeled. Only the links between these elements are described in a high level
language. A Mediation chain is close to the concept of ”parternlink” in BPEL [?]
but there are two main differences that come from the lack of integration of
mediation in BPEL:

'7 http:/ /www.omg.org/mda/

Web Service X

Application

(User of Web Services) Web Service Y

Web Service Z

Architectural View
Deployment View

-@ Service Requester O@@ a@
() Mediator Host 1 Host 2 Host 3 Host 4

- websenvice Middleware (administration + communication)

Fig. 5. Global architecture

— the data type is not necessarily the same on the client side of the link and
on the server side because transformations are done on data;

— the Mediator chain is much more complex than the parterlink; it allows
to describe processings done on data and the binding (e.g . synchronous,
asynchronous, etc).

Another model is used to describe the execution environment, that is the ESB.
In the current version of the mediation suite, the execution environment is pro-
vided by Scalagent under the form of an adapted version of the open source
Joram middleware'®. The challenge of the current project is to allow the exe-
cution of the mediation chains on an ESB. To meet the needs of the mediation
suite, the ESB has to able to load dynamically new mediators and to take deci-
sion during a reconfiguration. This execution environment should also provide a
middleware layer to interconnect the different execution environment. Figure 6
summarizes this execution environment. The middleware will be used to manage
the monitoring, but also to interconnect the different mediators. It is important
to note that the ESBs presented in the previous sections meet these technical
requirements.

To automatically deploy and manage the set of mediators on ESBs, a specific
language has to be developed. This language gives information about the loca-
tion of mediators. This language will only describe where are physically located
the mediators. This language has to remain very simple: it simply does the cor-
respondence between a symbolic name of a mediator (used also in the ADL)
and a host. We believe that is should be based on XML because. Through an
extensible XML Schema, it allows to construct structured files to describe the
mediation chain, that may be shared between the mediation actors, using a com-

18 www.objectweb.org

mon vocabulary and grammar.
We also plan to extend ESBs functions in order to improve dynamism. To do

< @ Mediator Middleware <>

Admin IN Mediator ouT

Mediator Execution Environment

Fig. 6. The Mediation Middleware

so, we will use OSGi which provides a good solution to dynamically load and un-
load code. OSGi provides also a good solution to dynamically link the mediator
with the execution environment. Inside the execution environment, a remotely
administrable part should be planned. This part will communicate through the
middleware.

5 Conclusion

Today’s solutions for Web Service orchestration do not integrate heterogeneity
of data type. At runtime, mediation operations have to be added to the system
in order to ensure interoperability between Web Services. But mediation solu-
tions are very technology-oriented. They do not provide abstractions that would
facilitate the design and the administration of mediation chains. Dealing with
distribution over heterogeneous networks and appearance of new Web Services
becomes a hard task.

We propose then a higher abstraction model for mediation. Our model defines
two levels: (i) a Platform Independant Model that provides an architectural view
of the mediation chain. It defines the elements of the chain (Service, Client, Me-
diator component and Mediator component) that may be mapped automatically
to the second level (ii) a framework that should provide a deployment language,
a runtime environment and tools to dynamically administrate and reconfigure
the platform by generating the communication code.

The architecture and the model presented in this paper meet the requirements of
services integration: (i) the execution process is independent from the mediation

chain model to improve the reusability of the two elements, (ii) the mediation
chain model separates the implementation of the mediation elements from their
bindings, also to improve the reusability of this two elements, (iii) a mediation
chain is projected on a distributed ESB to balance the load, (iv) a mediation
chain can be updated during the execution of the execution process to avoid
interruption of services during reconfigurations.

Our work builds on top of the mediation suite provided by the Scalagent company
that has been used successfully in several device-oriented domain. The challenge
is to replace the proprietary execution environment by ESBs (commercial or
open source) while keeping the abstract, platform independent description of
mediation chains. We are also exploring new ways to express business and medi-
ation code. A promising approach is to use BPEL, that allows to describe Webs
Services choreography, or another choreography language like APEL [?].
Another objective is to extend the ESBs execution capabilities in order to make
them more dynamic regarding administration and configuration. To do so, we
plan to integrate OSGi as an execution platform for the asynchronous middle-
ware runtimes.

