
Automatic OpenCL code generation for
multi-device heterogeneous architectures

Pei Li∗, Elisabeth Brunet∗, François Trahay∗, Christian Parrot∗, Gaël Thomas∗ and Raymond Namyst†
∗Telecom SudParis, firstname.lastname@telecom-sudparis.eu
†University of Bordeaux 1, raymond.namyst@inria.fr

Abstract—Using multiple accelerators, such as GPUs or Xeon
Phis, is attractive to improve the performance of large data
parallel applications and to increase the size of their workloads.
However, writing an application for multiple accelerators remains
today challenging because going from a single accelerator to
multiple ones indeed requires to deal with potentially non-
uniform domain decomposition, inter-accelerator data move-
ments, and dynamic load balancing. Writing such code manually
is time consuming and error-prone. In this paper, we propose
a new programming tool called STEPOCL along with a new
domain specific language designed to simplify the development
of an application for multiple accelerators. We evaluate both
the performance and the usefulness of STEPOCL with three
applications and show that: (i) the performance of an application
written with STEPOCL scales linearly with the number of
accelerators, (ii) the performance of an application written using
STEPOCL competes with a handwritten version, (iii) larger
workloads run on multiple devices that do not fit in the memory
of a single device, (iv) thanks to STEPOCL, the number of lines
of code required to write an application for multiple accelerators
is roughly divided by ten.

Keywords-Heterogeneous architectures, OpenCL, Code gener-
ation, Accelerators

I. INTRODUCTION

Numerical simulations in Physics, Chemistry or Health
relying on hardware accelerators such as GPUs or Xeon Phis
to meet their computing needs are now commonplace. Existing
programming tools for these accelerators [1]–[3] typically
define APIs to deploy and execute compute kernels, i.e. single-
instruction multiple-data (SIMD) parallel tasks, on the process-
ing units of accelerators. However, these programming tools
are not tailored for multi-accelerator application development,
while using multiple accelerators, potentially heterogeneous,
is definitely attractive to increase both the computing power
and the memory capability of applications.

Designing applications able to exploit multiple heteroge-
neous accelerators is challenging. Beside writing compute
kernels optimized for the accelerators, the developer has to
cope with many non-functional aspects. First, in order to
achieve the best possible performance, the developer has to
identify an efficient partitioning of the workload among the
accelerators. This efficient partitioning is not only related to
the theoretical performance of the accelerator, but also to
the actual application and its workload. Then, the developer
has to write code to coordinate the execution of multiple
kernels running on different devices, to actually partition the
workload among them and to perform data movements and

synchronization between them. Implementing these features
is time-consuming and error-prone. Moreover, the developer
often implements these features for a specific hardware and
has to drastically modify his code on a different hardware.

To ease the development of an application for multiple
heterogeneous accelerators, we propose a new programming
tool called STEPOCL. STEPOCL separates the functional
aspects of the code, i.e., the compute kernels, from the non-
functional ones. The non-functional aspects of the code are
described in a domain specific language, called the STEPOCL
language. It mainly consists in describing the data layout and
the kernel of the application. Using a domain specific language
improves the productivity of the developer by decreasing the
number of lines of codes required to implement a full multi-
device application. Moreover, the code written in the domain
specific language is not limited to a specific hardware setting,
which increases the portability of the code. Finally, it also has
the advantage of avoiding many bugs caused by the use of a
low-level language.

Based on the compute kernels and on the description of the
non-functional aspects, STEPOCL automatically generates
a full OpenCL application, but also an offline profiler for
this application. The profiler computes an efficient workload
partitioning for a specific set of accelerators and a specific
workload. The generated application takes in charge the ini-
tialization of the OpenCL environment, which includes the
discovery of the accelerators, the mapping of the data to the
accelerators according to the offline profiling results, and the
launch of the kernels over the accelerators. During execution,
the generated application also automatically exchanges the
data between the accelerators to maintain the data consistency
thanks to a polyhedral data analysis, and, at the end of the
execution, the generated application reduces the results by
retrieving them from the accelerators.

We evaluate STEPOCL with three application kernels (a
5-point 2D-stencil, a matrix multiplication and an N-body
application) on two multi-device heterogeneous machines that
combine CPUs with different accelerators: CPU+GPUs and
CPU+Xeon Phis. Our main results show that:
• When running on multiple heterogeneous devices 1, the

performance of the code generated by STEPOCL scales
linearly with the number of devices.

• As compared to the same applications written directly in

1A device is either a CPU or an accelerator.

OpenCL and provided with the OpenCL version of AMD,
the applications written with STEPOCL have similar
performance.

• Thanks to STEPOCL, we are able to run large workloads
on multiple devices that do not fit in the memory of a
single device.

• As compared to the generated code, STEPOCL is able
to divide by ten the number of lines of code of the
application. Also as compared to the native OpenCL
applications, STEPOCL is able to divide by five their
number of lines of code. Furthermore, while the appli-
cations shipped with the OpenCL version of AMD only
run on a single device, the STEPOCL applications are
able to run on multiple heterogeneous devices.

The rest of the paper is organized as follows. Section II
presents an overview of OpenCL, on which STEPOCL relies.
Section III describes how STEPOCL generates source code
and Section IV presents the offline profiler. The results of
the evaluation of STEPOCL are analyzed in Section V.
Section VI discusses the articulation of our work in the state
of the art. Finally, Section VII gives a conclusion of the paper.

II. OPENCL IN A NUTSHELL

This Section briefly describes the Open Computing Lan-
guage [2] (OpenCL), the language used internally by
STEPOCL. OpenCL combines a unified programming inter-
face with a variant of the C language to use different parallel
processing devices together (e.g. CPU, GPU and Xeon Phi).

OpenCL defines an abstract device as a set of compute units,
each compute unit being a set of processing elements (PEs)
with a compact high-speed local memory.

OpenCL follows the single-instruction multiple-data
(SIMD) execution paradigm. The developer first defines a
function, called a kernel. Then, he defines a host code that
orchestrates the copy of the data used by the kernel on the
device before starting multiple instances of this kernel on
the PEs. An instance of the kernel is called a work-item. It
handles only a subset of the data identified by its specific
identifier, which is given by a specific OpenCL primitive (the
get_global_id primitive).

Because a device does not provide global synchronization
mechanisms neither global shared memory, OpenCL also
defines the notion of work-group. A work-group contains a
set of work-items and is deployed on a same compute unit.
Figure 1 illustrates this notion of work-group: a 2D-kernel
index space is split into Gx×Gy work-groups, each of which
consists of Sx × Sy work-items. For the work-items of a
same work-group, OpenCL provides efficient synchronization
mechanisms and allows to share local memory as they are
executed on the same compute unit.

III. STEPOCL CODE GENERATOR

This Section describes both the STEPOCL language and
the generated OpenCL application, while the next Section
describes the offline profiler.

...

...

...

...

...

......Gy

Gx

sx = 0
sy = 0

work item
(wxSx+sx,
wySy+sy)

sx = Sx-1
sy = 0

work item
(wxSx+sx,
wySy+sy)

...

sx = 0
sy = Sy-1

work item
(wxSx+sx,
wySy+sy)

sx = Sx-1
sy = Sy-1

work item
(wxSx+sx,
wySy+sy)

...
...

......

work group (wx,wy)

Sx

Sy

Fig. 1. OpenCL Work-Groups and Work-Items.

Output

STEPOCL configuration
file

Inputs

STEPOCL
Code Generator

Full multi-device
OpenCL application

CPU Xeon Phi

STEPOCL runtime

GPU ...

OpenCL compute kernels

Fig. 2. Overview of the STEPOCL environment.

As illustrated in Figure 2, the core component of
STEPOCL is a code generator, which takes as input a list
of raw OpenCL kernels (see Subsection III-A) together with
a configuration file (see Subsection III-B) which describes:

• the layout of the data, which expresses how the data shall
be split among the devices,

• the association between a compute kernel and a specific
device type (see Subsection III-B), and

• the expected control flow of the application to generate.

Based on this input, STEPOCL then generates a complete
OpenCL program (see Subsection III-C) able to exploit con-
currently different accelerators, e.g., CPU, GPU and Xeon Phi
that runs on top of the STEPOCL runtime. At bootstrap, the
generated code sets up a unified OpenCL multi-device envi-
ronment and distributes the workload among the accelerators
based on the results of the offline profiler. Then, during the
run, the generated code maintains data consistency between the
devices by using the result of a data flow analysis performed
during compilation.

A. Compute kernels

The input kernels are regular OpenCL kernels, which ex-
press the computation to execute on a device. As a basic
example for the remaining of this Section, we provide a 1D-
stencil kernel written for a single generic device in Listing 1.

The developer may prepare several versions of the compute
kernel to achieve the best performance on a specific device
type. For instance, in order to favor data cache effects of a
CPU in the 1D-stencil, it is more efficient to process data by
tile, i.e. by block of elements instead of element-by-element, as
presented in Listing 2. In this case, the computation performed

k e r n e l vo id g e n e r i c s t e n c i l 1 D (g l o b a l f l o a t ∗A, g l o b a l
f l o a t ∗B) {

c o n s t u n s i g n e d i n t i = g e t g l o b a l i d (0) + 1 ;
B[i]= (A[i−1]+A[i]+A[i + 1]) / 3 ;

}

Listing 1. Generic OpenCL 1D-stencil kernel.

k e r n e l vo id t i l e d s t e n c i l 1 D (g l o b a l f l o a t ∗A, g l o b a l
f l o a t ∗B) {

c o n s t u n s i g n e d i n t i = g e t g l o b a l i d (0) + 1 ;
f o r (i n t k = 0 ; k < 4 ; k ++)

B[i +k]= (A[i +k−1]+A[i +k]+A[i +k + 1]) / 3 ;
}

Listing 2. Tiled OpenCL 1D-stencil kernel.

by the CPU remains the same, but the amount of work-items
differs.

B. STEPOCL configuration file

The configuration file takes the form of a tree, implemented
in XML format. It defines the arguments of the kernel, how
the kernels are mapped to the device type, and the control flow
of the program.

An argument describes an array of values, transferred to
the devices and accessed by the work-items. It is defined by
three elements: (i) a name (ID), later used in the kernel section
to refer to the argument, (ii) the type (data_type) of its to-
kens and (iii) its size, which further specifies the dimension
and length of the array. For instance, the configuration file
given in Listing 3 defines the arguments of our 1D-stencil
example: arrays A and B are two 1D vectors, which contain
1026 float values each.

The kernel section of the configuration file describes the
mapping between the kernels and the device types. It contains
three elements:
• A name element. It references the kernel in the subse-

quent control flow section.
• A data_split element. For each argument, it gives

along which dimension its related data should be split.
• At least one implem element. An implem element

associates a compute kernel code to a specific device
and defines the size of a tile, i.e. the size of the data
to compute by each work-item. The default tile size is 1.

The kernel section may contain several implem elements
in order to associate different kernel codes (funcname) to
different devices (device_type). The DEFAULT implem
is used when no other implem corresponds to the device.

As introduced in Section II, the programmer can also
specify the size of the work-groups (work-group) used to
design a specific kernel version.

Listing 4 presents the kernel configuration of the 1D-stencil.
The user expresses that arrays A and B shall be split by column
(i.e. split along the x axis). Three versions of the kernel are
provided. The first version (the tiled_stencil1D kernel)
targets CPU devices and performs its computation on tiles
of four elements. The second version (the GPU_stencil1D

<argument>
<ID> A </ID>
<d a t a t y p e> f l o a t </ d a t a t y p e>
<a r g s i z e>

<d i m s i z e a x i s =x> 1026 </ d im s ize>
</ a r g s i z e>

</ argument>
<argument>

<ID> B </ID>
<d a t a t y p e> f l o a t </ d a t a t y p e>
<a r g s i z e>

<d i m s i z e a x i s =x> 1026 </ d im s ize>
</ a r g s i z e>

</ argument>

Listing 3. Argument description of the 1D-stencil kernel.

<k e r n e l>
<name> S t e n c i l 1 D </name>
<d a t a s p l i t >

<a x i s ID=B> x </ a x i s>
<a x i s ID=A> x </ a x i s>

</ d a t a s p l i t >
<implem>

<d e v i c e t y p e> CPU </ d e v i c e t y p e>
<funcname> t i l e d s t e n c i l 1 D </ funcname>
< t i l e >

<t a r g e t a r g> B </ t a r g e t a r g>
<s i z e a x i s =x> 4 </ s i z e>

</ t i l e >
</implem>
<implem>

<d e v i c e t y p e> GPU </ d e v i c e t y p e>
<funcname> GPU stenci l1D </ funcname>
<work group>

<s i z e a x i s =x> 16 </ s i z e>
</work group>

</implem>
<implem>

<d e v i c e t y p e> DEFAULT </ d e v i c e t y p e>
<funcname> g e n e r i c s t e n c i l 1 D </ funcname>

</implem>
</ k e r n e l>

Listing 4. 1D-stencil kernel information.

kernel) is designed for GPU devices. It specifies the aggrega-
tion of work-items by groups of 16 along the x axis, which
means that a group of 16 work-items can share their memory.
The third kernel version (the generic_stencil1D kernel)
is the more basic as it uses neither tile nor work-group. This
version is also the more generic as it can be used on any other
available device.

The third component of the STEPOCL configuration file
describes the program control flow. The control flow is
basically the meta-algorithm of the application and is used by
the data analysis pass to ensure consistency. This component
describes the number of iterations of the kernel to launch
(loop keyword) and how data are exchanged between two
iterations (switch keyword). For instance, in Listing 5, the
STEPOCL application executes 10 times the Stencil1D
and has to switch the arguments A and B between two
iterations.

C. STEPOCL Output OpenCL application

Based on the kernel(s) and on the configuration file,
STEPOCL generates a multi-device OpenCL program. After
the initialization of the OpenCL environment, the gener-

<c o n t r o l>
<l oop i t e r a t i o n s =10 >

<exec> S t e n c i l 1 D </exec>
<swi t ch>

<a r g ID=A> B </ a rg>
</ sw i t ch>

</ loop>
</ c o n t r o l>

Listing 5. 1D-stencil kernel execution.

k e r n e l vo id g e n e r i c s t e n c i l 1 D (g l o b a l f l o a t ∗A, g l o b a l
f l o a t ∗B) {

c o n s t u n s i g n e d i n t i = g e t g l o b a l i d (0) +1;
/ / <A[PHI1]−R−EXACT−{PHI1==i , i==1}>
/ / <A[PHI1]−R−EXACT−{PHI1==i +1 , i==1}>
/ / <A[PHI1]−R−EXACT−{PHI1==i−1, i==1}>
/ / <B[PHI1]−W−EXACT−{PHI1==i , i==1}>
B[i]= i + (A[i−1]+A[i]+A[i + 1]) / 3 ;

}

Listing 6. Resulting READ and WRITE array regions of the 1D-stencil
kernel.

ated program contains three main components: the detection
component, the deployment component, and the consistency
component. The generated code ends by collecting and aggre-
gating the result from each device. Algorithm 1 illustrates this
process.

Detection component: During the initialization (line 1 of
Algorithm 1), the generated code detects the available OpenCL
devices and associates a ratio to each device thanks to the
offline profiler (see Section IV). It indicates the percentage of
the workload that the generated code has to deploy to each
device. After the initialization, the Devices variable thus
contains a list of (device, ratio) pairs.

Deployment component: The deployment component
(lines 2 to 5 and lines 8 to 12 in Algorithm 1) performs the
initial deployment of the kernels on the devices.

First, based on the ratio (provided by the detection com-
ponent) and on the tile size (provided by the configuration
file, see Section III-B) of each device, the generated code
computes the number of tasks for each device. For a given
device, the number of tasks is simply equal to the size of the
output argument multiplied by the ratio and divided by the
size of a tile.

Then, with the data_split axis provided by the con-
figuration file (see Subsection III-B) and on the list of tasks
computed at the previous line, the generated code computes
the subset of the input data accessed by each device (line 4 of
Algorithm 1). This computation relies on the PIPS compiler
[4]. PIPS analyzes the instructions and represents memory
accesses as convex polyhedra [5]–[7]. As an illustration,
Listing 6 reports the access patterns to arrays A and B in
the 1D-stencil: the kernel reads A at three different positions
(i, i+ 1 and i− 1) while it writes B at the position i. From
this information, the generated code computes the convex hull
of the data accessed by the tasks of each device, and stores
this result in the Subdata variable.

Finally, the generated program copies the data to the devices
(lines 8 to 9 of Algorithm 1) and deploys the tasks (lines 11

Fig. 3. Detection of data to be updated on other devices between two
iterations.

to 12).
Consistency component: This component ensures data

consistency and tries to minimize the data transfers between
the devices between two iterations. It includes the lines from
6 to 7 and line 14 of Algorithm 1.

The generated code first identifies the regions that have to
be exchanged between the iterations (line 6 of Algorithm 1).
Again, the generated code uses the PIPS analysis. For each ar-
gument exchanged between two iterations, the generated code
identifies which regions of the argument are replicated between
at least two devices, accessed in read in the input argument and
accessed in write in the output argument. Figure 3 presents an
illustration with a 2D-stencil computation. In this case, the red
regions are replicated between the devices. They are accessed
in read during an iteration because computing the new values
at the border of the blue part of the matrix relies on the values
in the red part. In this example, as at the end of an iteration,
the B matrix becomes the A matrix, the generated code has
to reload the red regions from its neighbor devices.

For each device, the FindDeviceNeighboring func-
tion at line 6 thus identifies both these neighbors and their
associated replicated regions. At the end of an iteration (line
15 of Algorithm 1), the generated code uses the result of this
analysis to perform the communication.

IV. STEPOCL OFFLINE PROFILER

This Section presents the offline profiler used by STEPOCL
to estimate the optimal workload partitioning of the generated
application on a set of devices, so that further executions of
the application balance the workload efficiently.

In order to generate the offline profiler, we reuse the
compilation infrastructure described in the previous Section,
but with three modifications. First, instead of using the ratio
provided by the offline profiler (which is not yet available), the
generated code estimates an initial ratio r0i of data that has to
be deployed on the device i by using its specification. Second,
the offline profiler computes the elapsed time dji to perform
the iteration j on each device i. Third, after each iteration,
the offline profiler copies all the output arguments that have

Algorithm 1: Generated host code.
Input:

Data host: Data location on the host
Data size: Data size
Data split: Data-splitting plan
Kernel tile: Computation size done by each kernel instance
N iter : Number of iterations

Data:
Devices: List of detected computing devices
Subtasksi: Workload assigned to device i
Subdatai: Data chunk to distribute on device i
Kernel accesses: Data access pattern by the kernel
Neighborsi: Data neighboring of device i
Data devicei: Data location on device i

1 Devices← InitOpenCLEnvironment();

2 Subtasks← PartitionWorkload(Data size,
3 Kernel tile,Devices);
4 Subdata← PartitionData(Data host,Data size,
5 Data split, Subtasks);
6 Neighbors← FindDeviceNeighboring(Subdata,
7 Kernel accesses);

8 foreach devi in Devices do
9 Data devicei ← InitDeviceData(devi, Subdatai);

10 for k=1 to N iter do
11 foreach devi in Devices do
12 InvokeKernel(Subtasksi, Data devicei);

13 WaitForTermination();
14 UpdateSubData(Subdata,Neighbors);

15 foreach devi in Devices do
16 ReadBack(Data host, devi, Data devicei);

17 FinalizeOpenCLEnvironment();

Task

CPU

GPU1

Xeon Phi

Partition

Execution

Subtask a

Subtask b

Subtask n

Subtasks

<d0j-1, d1j-1, …, dnj-1>

w0j
w1j

wnj

Fig. 4. Overview of the load balancing algorithm used in the STEPOCL
runtime.

to be switched with an input argument in the main memory,
re-estimates a new ratio rj+1

i based on the elapsed time and
the previous ratio rji , and redeploys the input arguments on
the device.

Figure 4 summarizes the mechanism. In the Figure, wj
i

represents the workload of the device i at the iteration j, i.e.,
the size of the input data multiplied by rji .

A naive way to adjust the ratios after each iteration would be
to consider the ratio between dj , the mean duration at iteration
j, and dji , for instance, by defining rj+1

i as rji × 1 + dj/dji .
The main drawback we may encounter by scheduling with this
method is the occurrence of the ping-pong effect illustrated in
Figure 5. Let us consider two homogeneous devices A and B.
Let us assume, for instance, that due to the instability caused
by cache misses or some other reasons, the evaluation of the
duration of iteration j for CPUa is over estimated. Then at

iteration j + 1, the naive re-balancing formulae will assign
more work-items to CPUb than to CPUa. As a result, at
the iteration j, the offline profiler considers that CPUb works
slowly and under loads it. We have observed that the naive
re-balancing formulae can overload CPUa at iteration j + 2
and that this phenomenon may be amplified.

In order to reduce the risk of this ping-pong effect,
STEPOCL adapts the changing speed of the ratio adjustment
from one iteration to another. The main idea of this method
is to reduce this changing speed whenever an inversion of the
direction of variation of rji is detected. To this end, a value
Q, initialized to 1, is incremented after each such inversion.

We consider that when Q increases, i.e., that after few
inversions, the re-balancing factor dj/dji should become less
important because the workloads are converging to an efficient
configuration. For this reason, we define the ratio for iteration
j and for device i as follows:

rj+1
i := rji

(
1 +

1

Q
×

(
dj

dji
− 1

))
;

The self-adjustment process keeps on running until σj ,
defined as the standard deviation of execution time on each
device for iteration j, becomes small enough. In STEPOCL,
we consider that the workload is ”calibrated” when σj <
0.05 dj . Once the calibration is complete, the new ratios rj+1

i

are returned, so that the next invocations of the generated
application distribute the workload efficiently among the tested
devices.

V. EXPERIMENTS

We evaluate STEPOCL on three test cases: a 5-point 2D-
stencil, a matrix multiplication and an N-body application.

We start by describing the target application context before
evaluating the generated codes according to different criteria:

• we compare the size of handwritten applications to
the size of the equivalent applications generated by
STEPOCL;

• we evaluate the accuracy of the offline profiler;
• we compare the performance of the handwritten appli-

cations to the performance of the equivalent applications
generated by STEPOCL when running on a single de-
vice;

• we evaluate the performance of the generated applications
when running on multiple devices.

Iteration Workload Partition

j CPU bCPU a

j+1 CPU bCPU a

j+2 CPU bCPU a

Fig. 5. Ping-pong effect of workload adjustment.

1 k e r n e l vo id s t e n c i l (g l o b a l f l o a t ∗B ,
2 g l o b a l f l o a t ∗A,
3 u n s i g n e d i n t l i n e s i z e) {
4 c o n s t u n s i g n e d i n t x = g e t g l o b a l i d (0) ;
5 c o n s t u n s i g n e d i n t y = g e t g l o b a l i d (1) ;
6 A += l i n e s i z e + 1 ; / / OFFSET
7 B += l i n e s i z e + 1 ; / / OFFSET
8 f o r (u n s i g n e d i n t k =0; k<4; k ++){
9 B [(y∗4 + k)∗ l i n e s i z e + x]

10 = 0 . 7 5 ∗ A[y∗4 + k] [x]
11 + 0 . 2 5 ∗ (t i l e [y∗4 + k + 1] [x−1]
12 + t i l e [y∗4 + k + 1] [x +1]
13 + t i l e [y∗4 + k−1][x−1]
14 + t i l e [y∗4 + k−1][x +1]) ;
15 }
16 }

Listing 7. 2D-stencil kernel with a tile of 4 elements.

A. Test cases

In order to assess the STEPOCL usability and performance,
we use three typical applications that can run on heterogeneous
multi-device platforms.

Stencil computation: The first application is a home-
made 5-point 2D-stencil. It takes a 2D matrix of scalar values
as input and outputs, for each element, a weighted average of
its 4-neighborhood. Figure 6 illustrates this computation. We
compare the STEPOCL stencil with another native OpenCL
version implemented by one of the author before our work on
STEPOCL. We set the configuration file so that:
• It defines two kernel arguments: an input and an output

matrices of float elements, which are marked to be split
by lines.

• It defines two kernel versions: the first kernel (reported
in Listing 7) is designed to fit CPU and Xeon Phi
devices by setting work-items to work over 4-elements
wide tiles while the second kernel is optimized for GPUs
and takes advantage of their shared memory. Each work-
group instantiates 16× 4 work-items that first copy their
data to their local shared memory before entering the
computation phase and processing 4 elements.

• The target application iterates ten times, switching input
and output matrices after each iteration. The STEPOCL
code updates data in device memory as described in
Subsection III-C: when a sub-matrix, corresponding to
the bounded interval [(x1, y1), (x2, y2)], is assigned to
a device, the frontiers of its corresponding output are
fetched from all its neighbor devices.

Fig. 6. 5-point 2D-stencil computation.

Matrix multiplication: The matrix multiplication appli-
cation computes the C = A × B operation on 2D matrices.
We compare the STEPOCL matrix multiplication with the
one provided by the AMD APP SDK benchmark. We set the
related configuration file so that:
• It defines three kernel arguments: the three matrices of

float elements A, B and C. C and A are marked to be
split by lines, and B is totally replicated on all the devices
because of the data dependency analysis.

• It defines two kernel versions: the first one targets CPU
and Xeon Phi devices using a tile of 4×4 elements, while
the one designed for GPUs also uses a tile of 4× 4, but
defines work-groups of 4×4 work-items in order to work
on shared local memory.

• The generated application executes only one iteration
without triggering any communication between devices.
N-body: The N-body application simulates the collective

motions of a large particle set under Newtonian forces in a
3D space. At each iteration, each particle, defined by a mass
and a velocity, changes both its position and its velocity by
using the position and the velocity of all the other particles.
We compare the STEPOCL N-body with the one provided
by the AMD APP SDK benchmark.

In STEPOCL, we define the following arguments:
• Three integers: the number of particles, a softening factor

and an elapsed time interval. All these arguments are
replicated because of the data dependency analysis;

• Two arrays of float elements containing the particle
positions: one stores the positions at the previous iteration
while the other, the current ones;

• Two arrays of float elements that contain the velocity
of each particle: one array stores the velocities at the
previous iteration while the other contains the current
ones.

The application simulates ten iterations. After each iteration,
it switches the input and output arrays. Considering the
communication, the two input arrays are replicated on all the
devices because of the data dependency analysis. Indeed, to
compute the new position and a new velocity of one particle,
all particle positions and velocities of the previous iteration
are used. As the input and output arrays are switched after
an iteration, between each iteration, each device broadcasts its
output to all the other devices.

B. Volume of the generated source code
Table I reports the number of lines of code of the three

native OpenCL applications as well as the size of the three
configuration files that STEPOCL used for generating the
tested applications. The table also contains the number of
lines of code of the applications generated by STEPOCL.
The kernels consist of a few tens of lines of code. However,
the native OpenCL applications and generated host codes in
charge of instantiating the kernels on the devices consist of
several hundreds of lines of code.

The native OpenCL applications are only able to run on
a single device, while the STEPOCL applications can run

Test case Native OpenCL application Kernels STEPOCL configuration file STEPOCL generated code
(kernels included) (kernels included)

Stencil 490 GPU=51/others=18 75 1153
Mat. Mult. 1212 GPU=103/others=78 56 1216
N-body 1041 81 83 1116

TABLE I
GENERATED STEPOCL CODE SIZE (IN LINES).

Name HANNIBAL MISTRAL
CPU models 2 x Intel Xeon X5550 2 x Intel Xeon E5-2670
CPU cores 2 x 4 2 x 10
threads 2 x 8 2 x 10
CPU frequency 2.66 GHz 2.50GHz
OpenCL support Intel OpenCL 1.1 Intel OpenCL 1.2
Accelerator type NVIDIA GPU Intel Xeon Phi
Models 3 x Quadro FX 5800 2 x Xeon Phi 7120P
cores 3 x 240 CUDA cores 2 x 61 cores (2 x 244 threads)
Processor clock 1296 MHz 1238MHz
Memory 3 x 4096 MB GDDR3 2 x 16 GB GDDR5
OpenCL support NVidia OpenCL 1.1 Intel OpenCL 1.2

TABLE II
EXPERIMENTAL PLATFORM OUTLINE.

on multiple devices. This difference explains that the number
of lines of code of the stencil generated with STEPOCL is
significantly larger than the native OpenCL stencil. For the
two other applications, this comparison is unfair: the native
OpenCL applications are written in C++ with a large number
of templates while the generated STEPOCL applications are
written in C.

To conclude, we can observe that the STEPOCL config-
uration files contain only a few tens of lines of code, which
is roughly ten times smaller than the generated code. This
result shows that STEPOCL simplifies the development of
an application for multiple device.

C. Performance evaluation

We now evaluate the performance of the three applications
on two heterogeneous platforms.

1) Experimental platforms: We summarize the characteris-
tics of the two platforms in Table II: the HANNIBAL platform
is a dual quad-core Intel Xeon CPU with three Quadro FX
5800 GPUs while MISTRAL is a dual 10-cores Intel Xeon
CPU with two Xeon Phi accelerators.

2) Evaluation of the profiler: Before evaluating the perfor-
mance of the applications, we evaluate the offline profiler by
measuring how it converges towards a balanced distribution of
the workload.

Figure 7 depicts the workload distribution wj
i and the

measured duration dji of the CPU and GPU devices on a
machine running a 7-point 3D-stencil. Artificially, for the first
iteration of the application, we assign 99 % of the workload
to the GPU and the remaining 1 % to the CPU. After the
first iteration, the profiler detects that it assigned too much
workload to the GPU. The workload partition for the second
iteration thus assigns more work-items to the CPU, which
results in a more balanced execution time. Yet, the difference

between dt20 and dt21 leads to assigning more work-items to the
CPU for the third iteration. After the third iteration, the profiler
detects that the difference between dt30 and dt31 is small enough
and stops the calibration process. In this experiment, we run
a few more iterations in order to make sure that the execution
on each device is stable when the workload distribution does
not change.

3) Comparison with the reference codes: In order to ensure
that the code generated by STEPOCL does not degrade the
performance as compared to a native implementation written
directly in OpenCL, we compare the performance of the
generated application with the native OpenCL applications.

As the native OpenCL applications are only designed to run
on a single device, we only use a single GPU on HANNIBAL.
From Table III, we can observe that STEPOCL does not
change the performance of the matrix multiplication and that
STEPOCL introduces an overhead of 1% for stencil and
2% for N-body. From this result, we can thus conclude that
STEPOCL does not significantly modify the performance on
a single accelerator.

4) Stencil: Figure 8 presents the performance of the gen-
erated stencil code on the two machines. Our measures un-
derline the performance scalability achieved by STEPOCL,
with GPU and CPU devices adding up their computational
horsepower efficiency.

On HANNIBAL (see Figure 8(a)), we observe that the peak
performance achieved when using all the available devices
(91.8 GFLOPS) roughly corresponds to the sum of the per-

0

20

40

60

80

100

W
or

kl
oa

d
ra

tio
(%

)

t1 t2 t3 t4 t5 t6

0

10

20

30

40

Step of execution

Ti
m

e
of

ex
ec

ut
io

n
on

ea
ch

de
vi

ce
(m

s)

Workload on GPU

Workload on CPU
Execution time on GPU
Execution time on CPU

Fig. 7. Workload adjustment performance of the 3D-stencil application.

0 GiB 1 GiB 2 GiB 3 GiB 4 GiB 5 GiB 6 GiB 7 GiB 8 GiB
0

20

40

60

80

100

Data size (GiB)

G
FL

O
PS

1 CPU 1 GPU 2 GPUs 3 GPUs 1 CPU + 3 GPUs

(a) Performance on HANNIBAL

0 GiB 1 GiB 2 GiB 3 GiB 4 GiB 5 GiB 6 GiB 7 GiB
0

50

100

Data size (GiB)

G
FL

O
PS

1 CPU 1 MIC 2 MICs 1 CPU + 2 MICs

(b) Performance on MISTRAL

Fig. 8. Performance of the 5-point 2D-stencil application. The horizontal axis corresponds to the size the input and output matrices required to solve the
problem.

formance of each device running individually (14.5 GFLOPS
for 1 CPU, 28.1 GFLOPS for 1 GPU). The efficiency is not
100 % because of the communication between the devices that
are required when computing the stencil on multiple devices
in order to ensure data consistency.

The results on the mistral platform have a similar trend: the
peak performance when using all the devices (134.1 GFLOPS)
approximately corresponds to the sum of the individual per-
formance (20.6 GFLOPS on 1 CPU, 63.1 GFLOPS on 1 Xeon
Phi).

From these two results, we can conclude that STEPOCL
scales linearly with the number of devices. This result also
confirms that the offline profiler seems to provide efficient
ratios able to perfectly balance the load between the devices.

Moreover, STEPOCL pushes forward the memory limits
by automatically distributing data sets which are too large to
be processed by a single device, summing up the memory of
multiple devices to handle larger problems. On the HANNIBAL
platform, where GPUs are equipped with 4 GiB of memory,
the 1-GPU version cannot process the test cases that require
more than 4 GiB of memory. Similarly, the 2-GPUs version is
limited to 8 GiB, while the versions that exploit the 3-GPUs
can process larger problems.

5) Matrix multiplication: Figure 9 presents the perfor-
mance of the generated matrix multiplication on the HAN-
NIBAL and MISTRAL machines. On HANNIBAL (see Fig-
ure 9(a)), the performance achieved when using both the CPU
and the 3 GPUs (184.3 GFLOPS) almost corresponds to the
sum of the performance achieved by each device individually
(18.36 GFLOPS on the CPU, 56.16 GFLOPS on each GPU).

Application name 2D-Stencil Mat. Mult. N-body
Workload 4096x4096 1024x1024 32768 particles

Relative performance 0.99 1.00 0.98

TABLE III
RELATIVE PERFORMANCE OF STEPOCL AS COMPARED TO A NATIVE

OPENCL IMPLEMENTATION ON HANNIBAL.

On MISTRAL (see Figure 9(b)), when using the CPU and the
2 Xeon Phis (252.9 GFLOPS), the performance corresponds
to 88 % of the one achieved by each device individually
(90.9 GFLOPS on the CPU, 97.4 GFLOPS on each Xeon Phi).
Thus, in terms of performance, the STEPOCL generated code
scales up correctly. Moreover, as for the stencil application, the
1-GPU version is bounded by its inner memory size. Once
again, STEPOCL allows to compute bigger problem than the
original code thanks to its multi-device dimension.

6) N-body: Figure 10 presents the performance of the
generated N-body application on HANNIBAL and MISTRAL.
On HANNIBAL (see Figure 10(a)), the performance achieved
when using both the CPU and the 3 GPUs (152.8 GFLOPS)
corresponds to 94 % of the cumulated performance achieved
by each device individually (9.38 GFLOPS on the CPU, 51.12
GFLOPS on each GPU). On MISTRAL (see Figure 10(b)),
when using the CPU and the 2 Xeon Phis (90 GFLOPS),
the performance corresponds to 83 % of the one achieved
by each device individually (16.31 GFLOPS on the CPU,
45.68 GFLOPS on each Xeon Phi).

As described in Subsection V-A, the updated data commu-
nication between each iteration is highly critical in comparison
to our two other test cases: after each iteration, the computed
data is broadcasted to all devices attending the computation.
This is why the generated N-body code does not scale well
on small data sets, particularly on Xeon Phi as cross-device
communication are very expensive on this platform. However,
the computation time increases in quadratic with the workload,
while the communication time only increases linearly. For this
reason, with larger workloads, the N-body application scales
linearly with the number of devices.

The N-body application does not deal with memory foot-
print as all arrays need to be duplicated. Since computation
grows quadratically, it really focuses on the reduction of the
makespan. STEPOCL reaches this objective with its multi-
device dimension.

0 GiB 1 GiB 2 GiB 3 GiB 4 GiB 5 GiB
0

50

100

150

200

Data size (GiB)

G
FL

O
PS

1 CPU 1 GPU 2 GPUs 3 GPUs 1 CPU + 3 GPUs

(a) Performance on HANNIBAL

0 GiB 0.5 GiB 1 GiB 1.5 GiB 2 GiB 2.5 GiB
0

100

200

300

Data size (GiB)

G
FL

O
PS

1 CPU 1 MIC 2 MICs 1CPU + 2MICs

(b) Performance on MISTRAL

Fig. 9. Performance of the matrix multiplication application. The horizontal axis corresponds to the summed size of the A, B, and C matrices.

210 212 214 216 218 219 220 221 222
0

50

100

150

Number of particles

G
FL

O
PS

1 CPU 1 GPU 2 GPUs 3 GPUs 1 CPU + 3 GPUs

(a) Performance on HANNIBAL

210 212 214 216 218 219 220 221 222
0

20

40

60

80

100

Number of particles

G
FL

O
PS

1 CPU 1 MIC 2 MICs 1 CPU + 2 MICs

(b) Performance on MISTRAL

Fig. 10. Performance of the N-body application.

VI. STATE OF THE ART

As heterogeneous architectures are becoming ubiquitous,
many studies have focused on alleviating heterogeneous sys-
tems programming. OpenCL [2], which is described in Sec-
tion II, is an interface used to implement parallel programs
over heterogeneous systems. While OpenCL only provides
primitives to deploy a compute-kernel on a specific device,
STEPOCL also automatically takes in charge the deployment
on heterogeneous devices, the communication between the
devices, the data consistency between the device and the
retrieval of the result from the different devices at the end
of the computation.

In order to maintain a software compatibility when the
architecture changes and in order to introduce dynamic load
balancing, several research works propose to enable applica-
tions to dynamically dispatch computation kernels over pro-
cessing devices so as to maximize their utilization. SOCL [8],
based on the StarPU [9] runtime system, allows the developer
to submit the compute kernels to a unique virtual OpenCL
device, which transparently distributes them over the physical
devices at runtime. LibWater [10] also proposes a uniform
approach for programming heterogeneous computing systems

thanks to a global command queue. Furthermore, LibWater
hides the distribution by managing transparently devices on
remote machines. With these approaches, application devel-
opers submit tasks and describe dependencies between tasks.
The runtime system then schedules each task over a single
device. Instead, STEPOCL targets the uses of multiple device
to execute a task. It partitions the workload among the devices
and maintains their consistency during the execution, which is
not handled by these projects.

Other approaches consist in using source-to-source com-
piler techniques for generating the source code necessary for
exploiting multiple devices. For instance, Kim et al. [11]
propose an OpenCL framework to manage multiple GPUs
within a node. This OpenCL framework hides multiple GPUs
and simulates a single GPU. It takes in charge the deployment
of the code on the multiple GPUs transparently by partitioning
the workload equally among the different devices. Compared
to STEPOCL, Kim et al. focuses on homogeneous multiple
device systems and data independent tasks. Their OpenCL
framework can neither work with heterogeneous devices and
the developer has still to write the code to handle data
consistency and communication.

Klaus Kofler et al. [12] propose an approach to automati-
cally optimize task partitioning for different problem sizes and
different heterogeneous architectures. They use the Insieme
[13] source-to-source compiler to translate a single device
OpenCL program into a multi-device OpenCL program. The
Insieme runtime system then performs dynamic task parti-
tioning based on an offline-generated prediction model. The
predictive model is generated by using an Artificial Neural
Networks approach. It incorporates static program features
with dynamic input sensitive features. While the Insieme
runtime partitions the workload at runtime, it relies on pre-
dicted performance that may be imprecise. The approach that
we propose partitions the workload according to the actual
measured performance of the application.

Lee Janghaeng et al. also propose a tool, called SKMD,
that generates a multi-device source code from a single-device
kernel [14]. This system transparently orchestrates collabora-
tive execution of a single data-parallel kernel across multiple
asymmetric CPUs and GPUs. The programmer is responsible
for developing a single data-parallel kernel in OpenCL, while
the system automatically partitions the workload across an
arbitrary set of devices, generates kernels to execute the partial
workloads, dynamically adjusts the workload across devices
and merges the partial outputs together. As compared to
STEPOCL, SKMD duplicates all data on every device. Thus
each device needs to allocate all the data, even if the device
does not use it. This unnecessary memory redundancy for
the whole system limits the problem size that can be treated.
On the contrary, STEPOCL allocates only the necessary data
on each device and automatically transfers intermediary data
between devices. Thus, larger problems can be processed using
multiple devices.

VII. CONCLUSION

This paper introduces STEPOCL, a programming tool
that eases the development of applications for multiple het-
erogeneous devices. Based on a legacy OpenCL compute
kernel and a STEPOCL configuration file provided by the
user, STEPOCL generates an offline profiler to guide the
partitioning of the workload and generates the OpenCL host
part of the application. The generated application schedules
the workload according to the profiling results, launches their
execution, and performs the necessary data exchanges between
devices.

We evaluated STEPOCL with three applications: a stencil
application, a matrix multiplication, and an N-body applica-
tion. We measured the performance of these applications on
two different multi-device platforms. Our evaluation shows
that, thanks to STEPOCL, the number of lines of code to
write an application for multiple devices is drastically reduced.
Our measurements also show that the code generated by
STEPOCL can run on complex multi-device systems and that
its performance scales well with the number of devices. Using
multiple devices also enables to cope with problem sizes that
cannot fit into a single accelerator.

Further works will focus on the research of automatic kernel
optimization for heterogeneous architectures. Architectures of
current accelerators are very diverse. To obtain optimal perfor-
mance, developers usually write different OpenCL kernel for
each type of device. We thus plan to extend STEPOCL with
heuristics to rewrite the code, in order to generate accelerator-
specific optimization.

REFERENCES

[1] Nvidia, “Compute unified device architecture programming guide,”
2007.

[2] A. Munshi, B. Gaster, T. Mattson, and D. Ginsburg, OpenCL Program-
ming Guide. Pearson Education, 2011.

[3] T. Ni, “Direct compute: Bring gpu computing to the mainstream,” in
GPU Technology Conference, 2009.

[4] F. Irigoin, P. Jouvelot, and R. Triolet, “Semantical interprocedural
parallelization: an overview of the pips project,” in ICS, 1991.

[5] D. Millot, A. Muller, C. Parrot, and F. Silber-Chaussumier, “Step: A
distributed openmp for coarse-grain parallelism tool,” in OpenMP in a
New Era of Parallelism. Springer, 2008, vol. 5004, ch. 8, pp. 83–99.

[6] B. Creusillet, “Array region analyses and applications,” Ph.D. disserta-
tion, École Nationale Supérieure des Mines de Paris, 1996.

[7] B. Creusillet and F. Irigoin, “Interprocedural array region analyses,” in
Languages and Compilers for Parallel Computing. Springer, 1996, vol.
1033, pp. 46–60.

[8] S. Henry, A. Denis, D. Barthou, M. C. Counilh, and R. Namyst, “Toward
OpenCL Automatic Multi-Device Support,” in Euro-Par 2014 Parallel
Processing, 2014, pp. 776–787.

[9] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “StarPU:
a unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency and Computation: Practice and Experience,
vol. 23, no. 2, pp. 187–198, 2011.

[10] I. Grasso, S. Pellegrini, B. Cosenza, and T. Fahringer, “LibWater:
Heterogeneous Distributed Computing Made Easy,” in Proceedings of
the 27th International ACM Conference on International Conference on
Supercomputing. ACM, 2013, pp. 161–172.

[11] K. Jungwon, K. Honggyu, L. J. Hwan, and L. Jaejin, “Achieving a single
compute device image in OpenCL for multiple GPUs,” in Proceedings
of the 16th ACM Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’11. ACM, 2011, pp. 277–288.

[12] K. Kofler, I. Grasso, B. Cosenza, and T. Fahringer, “An automatic input-
sensitive approach for heterogeneous task partitioning,” in Proceedings
of the 27th International ACM Conference on International Conference
on Supercomputing. ACM, 2013, pp. 149–160.

[13] H. Jordan, S. Pellegrini, P. Thoman, K. Kofler, and T. Fahringer, “IN-
SPIRE: The insieme parallel intermediate representation,” Proceedings
of the 22nd International Conference on Parallel Architectures and
Compilation Techniques, vol. 0, pp. 7–17, 2013.

[14] L. Janghaeng, S. Mehrzad, P. Yongjun, and M. Scott, “Transparent
CPU-GPU Collaboration for Data-parallel Kernels on Heterogeneous
Systems,” in Proceedings of PACT ’13, 2013, pp. 245–256.

